Network Working Group | R. Fielding, Editor |
Internet-Draft | Day Software |
Obsoletes: 2068, 2616 (if approved) | J. Gettys |
Intended status: Standards Track | One Laptop per Child |
Expires: June 22, 2008 | J. Mogul |
HP | |
H. Frystyk | |
Microsoft | |
L. Masinter | |
Adobe Systems | |
P. Leach | |
Microsoft | |
T. Berners-Lee | |
W3C/MIT | |
December 20, 2007 |
By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress”.¶
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.¶
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.¶
This Internet-Draft will expire on June 22, 2008.¶
The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia information systems. HTTP has been in use by the World Wide Web global information initiative since 1990. This document is Part 4 of the seven-part specification that defines the protocol referred to as "HTTP/1.1" and, taken together, obsoletes RFC 2616. Part 4 defines request header fields for indicating conditional requests and the rules for constructing responses to those requests.¶
This version of the HTTP specification contains only minimal editorial changes from [RFC2616] (abstract, introductory paragraph, and authors' addresses). All other changes are due to partitioning the original into seven mostly independent parts. The intent is for readers of future drafts to able to use draft 00 as the basis for comparison when the WG makes later changes to the specification text. This draft will shortly be followed by draft 01 (containing the first round of changes that have already been agreed to on the mailing list). There is no point in reviewing this draft other than to verify that the partitioning has been done correctly. Roy T. Fielding, Yves Lafon, and Julian Reschke will be the editors after draft 00 is submitted.¶
Discussion of this draft should take place on the HTTPBIS working group mailing list (ietf-http-wg@w3.org). The current issues list is at <http://www3.tools.ietf.org/wg/httpbis/trac/report/11> and related documents (including fancy diffs) can be found at <http://www3.tools.ietf.org/wg/httpbis/>.¶
If the client has performed a conditional GET request and access is allowed, but the document has not been modified, the server SHOULD respond with this status code. The 304 response MUST NOT contain a message-body, and thus is always terminated by the first empty line after the header fields.¶
The response MUST include the following header fields: ¶
If a clockless origin server obeys these rules, and proxies and clients add their own Date to any response received without one (as already specified by [RFC2068], section 14.19), caches will operate correctly. ¶
If the conditional GET used a strong cache validator (see [Part6]), the response SHOULD NOT include other entity-headers. Otherwise (i.e., the conditional GET used a weak validator), the response MUST NOT include other entity-headers; this prevents inconsistencies between cached entity-bodies and updated headers.¶
If a 304 response indicates an entity not currently cached, then the cache MUST disregard the response and repeat the request without the conditional.¶
If a cache uses a received 304 response to update a cache entry, the cache MUST update the entry to reflect any new field values given in the response.¶
The precondition given in one or more of the request-header fields evaluated to false when it was tested on the server. This response code allows the client to place preconditions on the current resource metainformation (header field data) and thus prevent the requested method from being applied to a resource other than the one intended.¶
Since both origin servers and caches will compare two validators to decide if they represent the same or different entities, one normally would expect that if the entity (the entity-body or any entity-headers) changes in any way, then the associated validator would change as well. If this is true, then we call this validator a "strong validator."¶
However, there might be cases when a server prefers to change the validator only on semantically significant changes, and not when insignificant aspects of the entity change. A validator that does not always change when the resource changes is a "weak validator."¶
Entity tags are normally "strong validators," but the protocol provides a mechanism to tag an entity tag as "weak." One can think of a strong validator as one that changes whenever the bits of an entity changes, while a weak value changes whenever the meaning of an entity changes. Alternatively, one can think of a strong validator as part of an identifier for a specific entity, while a weak validator is part of an identifier for a set of semantically equivalent entities. ¶
A "use" of a validator is either when a client generates a request and includes the validator in a validating header field, or when a server compares two validators.¶
Strong validators are usable in any context. Weak validators are only usable in contexts that do not depend on exact equality of an entity. For example, either kind is usable for a conditional GET of a full entity. However, only a strong validator is usable for a sub-range retrieval, since otherwise the client might end up with an internally inconsistent entity.¶
Clients MAY issue simple (non-subrange) GET requests with either weak validators or strong validators. Clients MUST NOT use weak validators in other forms of request.¶
The only function that the HTTP/1.1 protocol defines on validators is comparison. There are two validator comparison functions, depending on whether the comparison context allows the use of weak validators or not: ¶
An entity tag is strong unless it is explicitly tagged as weak. Section 2 gives the syntax for entity tags.¶
A Last-Modified time, when used as a validator in a request, is implicitly weak unless it is possible to deduce that it is strong, using the following rules: ¶
or ¶
or ¶
This method relies on the fact that if two different responses were sent by the origin server during the same second, but both had the same Last-Modified time, then at least one of those responses would have a Date value equal to its Last-Modified time. The arbitrary 60-second limit guards against the possibility that the Date and Last-Modified values are generated from different clocks, or at somewhat different times during the preparation of the response. An implementation MAY use a value larger than 60 seconds, if it is believed that 60 seconds is too short.¶
If a client wishes to perform a sub-range retrieval on a value for which it has only a Last-Modified time and no opaque validator, it MAY do this only if the Last-Modified time is strong in the sense described here.¶
A cache or origin server receiving a conditional request, other than a full-body GET request, MUST use the strong comparison function to evaluate the condition.¶
These rules allow HTTP/1.1 caches and clients to safely perform sub-range retrievals on values that have been obtained from HTTP/1.0 servers.¶
This section defines the syntax and semantics of all standard HTTP/1.1 header fields. For entity-header fields, both sender and recipient refer to either the client or the server, depending on who sends and who receives the entity.¶
The ETag response-header field provides the current value of the entity tag for the requested variant. The headers used with entity tags are described in sections 6.2, 6.4 and Section 5.3 of [Part5]. The entity tag MAY be used for comparison with other entities from the same resource (see Section 4).¶
ETag = "ETag" ":" entity-tag
Examples:
ETag: "xyzzy" ETag: W/"xyzzy" ETag: ""
The If-Match request-header field is used with a method to make it conditional. A client that has one or more entities previously obtained from the resource can verify that one of those entities is current by including a list of their associated entity tags in the If-Match header field. Entity tags are defined in Section 2. The purpose of this feature is to allow efficient updates of cached information with a minimum amount of transaction overhead. It is also used, on updating requests, to prevent inadvertent modification of the wrong version of a resource. As a special case, the value "*" matches any current entity of the resource.¶
If-Match = "If-Match" ":" ( "*" | 1#entity-tag )
If any of the entity tags match the entity tag of the entity that would have been returned in the response to a similar GET request (without the If-Match header) on that resource, or if "*" is given and any current entity exists for that resource, then the server MAY perform the requested method as if the If-Match header field did not exist.¶
A server MUST use the strong comparison function (see Section 4) to compare the entity tags in If-Match.¶
If none of the entity tags match, or if "*" is given and no current entity exists, the server MUST NOT perform the requested method, and MUST return a 412 (Precondition Failed) response. This behavior is most useful when the client wants to prevent an updating method, such as PUT, from modifying a resource that has changed since the client last retrieved it.¶
If the request would, without the If-Match header field, result in anything other than a 2xx or 412 status, then the If-Match header MUST be ignored.¶
The meaning of "If-Match: *" is that the method SHOULD be performed if the representation selected by the origin server (or by a cache, possibly using the Vary mechanism, see Section 3.5 of [Part6]) exists, and MUST NOT be performed if the representation does not exist.¶
A request intended to update a resource (e.g., a PUT) MAY include an If-Match header field to signal that the request method MUST NOT be applied if the entity corresponding to the If-Match value (a single entity tag) is no longer a representation of that resource. This allows the user to indicate that they do not wish the request to be successful if the resource has been changed without their knowledge. Examples:¶
If-Match: "xyzzy" If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz" If-Match: *
The result of a request having both an If-Match header field and either an If-None-Match or an If-Modified-Since header fields is undefined by this specification.¶
The If-Modified-Since request-header field is used with a method to make it conditional: if the requested variant has not been modified since the time specified in this field, an entity will not be returned from the server; instead, a 304 (not modified) response will be returned without any message-body.¶
If-Modified-Since = "If-Modified-Since" ":" HTTP-date
An example of the field is:¶
If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT
A GET method with an If-Modified-Since header and no Range header requests that the identified entity be transferred only if it has been modified since the date given by the If-Modified-Since header. The algorithm for determining this includes the following cases: ¶
The purpose of this feature is to allow efficient updates of cached information with a minimum amount of transaction overhead. ¶
The result of a request having both an If-Modified-Since header field and either an If-Match or an If-Unmodified-Since header fields is undefined by this specification.¶
The If-None-Match request-header field is used with a method to make it conditional. A client that has one or more entities previously obtained from the resource can verify that none of those entities is current by including a list of their associated entity tags in the If-None-Match header field. The purpose of this feature is to allow efficient updates of cached information with a minimum amount of transaction overhead. It is also used to prevent a method (e.g. PUT) from inadvertently modifying an existing resource when the client believes that the resource does not exist.¶
As a special case, the value "*" matches any current entity of the resource.¶
If-None-Match = "If-None-Match" ":" ( "*" | 1#entity-tag )
If any of the entity tags match the entity tag of the entity that would have been returned in the response to a similar GET request (without the If-None-Match header) on that resource, or if "*" is given and any current entity exists for that resource, then the server MUST NOT perform the requested method, unless required to do so because the resource's modification date fails to match that supplied in an If-Modified-Since header field in the request. Instead, if the request method was GET or HEAD, the server SHOULD respond with a 304 (Not Modified) response, including the cache-related header fields (particularly ETag) of one of the entities that matched. For all other request methods, the server MUST respond with a status of 412 (Precondition Failed).¶
See Section 4 for rules on how to determine if two entities tags match. The weak comparison function can only be used with GET or HEAD requests.¶
If none of the entity tags match, then the server MAY perform the requested method as if the If-None-Match header field did not exist, but MUST also ignore any If-Modified-Since header field(s) in the request. That is, if no entity tags match, then the server MUST NOT return a 304 (Not Modified) response.¶
If the request would, without the If-None-Match header field, result in anything other than a 2xx or 304 status, then the If-None-Match header MUST be ignored. (See Section 5 for a discussion of server behavior when both If-Modified-Since and If-None-Match appear in the same request.)¶
The meaning of "If-None-Match: *" is that the method MUST NOT be performed if the representation selected by the origin server (or by a cache, possibly using the Vary mechanism, see Section 3.5 of [Part6]) exists, and SHOULD be performed if the representation does not exist. This feature is intended to be useful in preventing races between PUT operations.¶
Examples:¶
If-None-Match: "xyzzy" If-None-Match: W/"xyzzy" If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz" If-None-Match: W/"xyzzy", W/"r2d2xxxx", W/"c3piozzzz" If-None-Match: *
The result of a request having both an If-None-Match header field and either an If-Match or an If-Unmodified-Since header fields is undefined by this specification.¶
The If-Unmodified-Since request-header field is used with a method to make it conditional. If the requested resource has not been modified since the time specified in this field, the server SHOULD perform the requested operation as if the If-Unmodified-Since header were not present.¶
If the requested variant has been modified since the specified time, the server MUST NOT perform the requested operation, and MUST return a 412 (Precondition Failed).¶
If-Unmodified-Since = "If-Unmodified-Since" ":" HTTP-date
An example of the field is:¶
If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT
If the request normally (i.e., without the If-Unmodified-Since header) would result in anything other than a 2xx or 412 status, the If-Unmodified-Since header SHOULD be ignored.¶
If the specified date is invalid, the header is ignored.¶
The result of a request having both an If-Unmodified-Since header field and either an If-None-Match or an If-Modified-Since header fields is undefined by this specification.¶
The Last-Modified entity-header field indicates the date and time at which the origin server believes the variant was last modified.¶
Last-Modified = "Last-Modified" ":" HTTP-date
An example of its use is¶
Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT
The exact meaning of this header field depends on the implementation of the origin server and the nature of the original resource. For files, it may be just the file system last-modified time. For entities with dynamically included parts, it may be the most recent of the set of last-modify times for its component parts. For database gateways, it may be the last-update time stamp of the record. For virtual objects, it may be the last time the internal state changed.¶
An origin server MUST NOT send a Last-Modified date which is later than the server's time of message origination. In such cases, where the resource's last modification would indicate some time in the future, the server MUST replace that date with the message origination date.¶
An origin server SHOULD obtain the Last-Modified value of the entity as close as possible to the time that it generates the Date value of its response. This allows a recipient to make an accurate assessment of the entity's modification time, especially if the entity changes near the time that the response is generated.¶
HTTP/1.1 servers SHOULD send Last-Modified whenever feasible.¶
TBD.¶
Based on an XML translation of RFC 2616 by Julian Reschke.¶
Copyright © The IETF Trust (2007).¶
This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.¶
This document and the information contained herein are provided on an “AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.¶
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.¶
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.¶
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.¶